川tra嗪可增加亨廷顿氏病患者抑郁和自杀念头和行为(自杀)的风险。任何考虑使用丁苯那嗪的人都必须在抑郁和自杀的风险与控制舞蹈病的临床需求之间取得平衡。治疗时应密切观察患者是否出现抑郁,自杀倾向或异常行为改变或恶化。应告知患者,其护理人员和家属抑郁和自杀的风险,并应指示他们迅速向主治医生报告所关注的行为。在治疗患有抑郁症史或曾有自杀企图或意念的患者时应格外谨慎,这些患者在亨廷顿舞蹈病中的发生频率增加。积极自杀的患者以及未接受治疗或未得到充分治疗的抑郁症患者均禁用四苯那嗪[见禁忌症( 4),警告和注意事项(5.1)]。
Tetrabenazine片剂适用于治疗与亨廷顿氏病相关的舞蹈病。
为每位患者分别确定用于治疗与亨廷顿舞蹈病(HD)相关的舞蹈病的四苯那嗪片剂的慢性每日剂量。最初开具处方时,丁苯那嗪疗法应在数周内缓慢滴定,以确定可减少舞蹈症且可耐受的四苯那嗪片剂剂量。可以在不考虑食物的情况下服用Tetrabenazine片剂[请参阅临床药理学(12.3)] 。
川ben嗪片的剂量应个体化。
剂量建议每天最多50毫克
起始剂量应为每天一次,每天12.5毫克。一周后,剂量应增加至每天25毫克,每天两次,每次12.5毫克。应当将Tetrabenazine片剂每周间隔每天缓慢滴定12.5 mg,以便确定可减少舞蹈症的耐受剂量。如果每天需要37.5毫克至50毫克的剂量,则应分三天服用。推荐的最大单剂量为25 mg。如果发生诸如静坐不稳,躁动不安,帕金森氏症,抑郁,失眠,焦虑或镇静等不良反应,应停止滴定并减少剂量。如果不良反应没有解决,应考虑撤消丁苯那嗪治疗或开始其他特殊治疗(例如抗抑郁药) [见不良反应(6.1)] 。
每日建议剂量超过50毫克
应首先测试需要每天服用大于50毫克四苯那嗪片剂的患者并进行基因分型,以根据其表达药物代谢酶CYP2D6的能力确定它们是弱代谢者(PMs)还是强代谢者(EMs)。丁苯那嗪的剂量应根据其作为PM或EM的状态进行相应的个性化[参见警告和注意事项(5.3),在特定人群中使用(8.7),临床药理学(12.3)] 。
广泛和中度CYP2D6代谢者
被确定为CYP2D6的广泛(EMs)或中间代谢物(IMs)的基因型患者,需要每天超过50 mg的川苯那嗪片剂量,应每周间隔每天12.5 mg缓慢滴定,以便鉴定减少舞蹈症的耐受剂量。每天50毫克以上的剂量应每天3次服用。建议的最大每日剂量为100毫克,最大的建议单次剂量为37.5毫克。如果发生诸如静坐不全,帕金森综合症,抑郁症,失眠,焦虑或镇静等不良反应,应停止滴定并减少剂量。如果不良反应仍未解决,则应考虑退出丁苯那嗪治疗或开始其他特异性治疗(例如抗抑郁药) [请参阅警告和注意事项(5.3),在特定人群中使用(8.7),临床药理学(12.3)] 。
CYP2D6代谢不良
在PM中,初始剂量和滴定与EM相似,不同之处在于建议的最大单剂量为25 mg,建议的每日剂量不应超过最大50 mg [请参见《特定人群的使用》(8.7),《临床药理学》(12.3)。 )] 。
强CYP2D6抑制剂
强有力的CYP2D6抑制剂(例如奎尼丁)或抗抑郁药(例如氟西汀,帕罗西汀)会显着增加对α-HTBZ和β-HTBZ的暴露;因此,四苯那嗪片剂的总剂量不应超过最大50 mg,最大单次剂量不应超过25 mg [请参阅警告和注意事项(5.3),药物相互作用(7.1),在特定人群中使用(8.7),临床药理学(12.3)]。
丁苯那嗪的治疗可以中止而不会逐渐减少。最后一次服用丁苯那嗪后12至18小时内可能出现舞蹈病再发[见药物滥用和依赖性(9.2)] 。
在中断治疗超过五(5)天之后,丁苯那嗪治疗应在重新开始时重新滴定。对于少于五(5)天的短期治疗中断,可以以以前的维持剂量恢复治疗而无需滴定。
Tetrabenazine片剂具有以下优势:
川tra嗪片12.5 mg可以口服给药,呈白色至灰白色,圆形,平面,斜角,无痕片剂,一侧刻有“ T12.5”,另一侧刻有“ APO”。
25 mg Tetrabenazine片剂可用于口服给药,呈黄色,圆形,扁平面,斜角边缘片剂,一侧具有功能评分,另一侧刻有“ A25”上方的“ APO”字样。
Tetrabenazine片剂禁止患者使用:
主动自杀的人,或患有抑郁症的未治疗或未充分治疗的患者[参见警告和注意事项(5.1)] 。
有肝功能不全的患者[请参见“在特定人群中使用(8.6),临床药理学(12.3)”] 。
服用单胺氧化酶抑制剂(MAOIs)。不可将Tetrabenazine片剂与MAOI组合使用,或在停止使用MAOI治疗的至少14天内使用[请参阅药物相互作用(7.3)] 。
服用利血平。停用利血平后至少应过20天,再开始使用川tra嗪片[参见药物相互作用(7.2)] 。
服用氘苯丁嗪或缬氨嗪[见药物相互作用(7.7)] 。
亨廷顿氏病患者患抑郁症,自杀念头或行为(自杀)的风险增加。 Tetrabenazine增加HD患者自杀的风险。
在一项为期12周的双盲,安慰剂对照研究中,亨廷顿舞蹈病相关的舞蹈病患者中,用丁苯那嗪治疗的54名患者中有10名(19%)发生了抑郁症或恶化为抑郁症,而没有一种发生30名接受安慰剂治疗的患者。在两项开放标签研究中(一项研究中,29名患者接受丁苯那嗪长达48周;在第二项研究中,75名患者接受丁苯那嗪长达80周),抑郁/加重抑郁的发生率为35%。
在丁苯那嗪的所有高清舞蹈病研究中(n = 187),一名患者自杀,一名自杀企图和六名自杀意念。在考虑使用丁苯那嗪时,应权衡自杀风险与治疗舞蹈病的需要。应观察所有使用丁苯那嗪治疗的患者的新发或恶化的抑郁或自杀倾向。如果抑郁或自杀无法解决,请考虑停止使用丁苯那嗪治疗。
应告知患者,其护理人员和家属与丁苯那嗪相关的抑郁,加重抑郁和自杀倾向的风险,并应指示他们迅速向主治医生报告所关注的行为。患有自杀意念的HD患者应立即进行评估。
亨廷顿舞蹈病是一种进行性疾病,其特征是情绪,认知,舞蹈病,僵硬和功能能力随时间的变化。在一项为期12周的对照试验中,丁苯那嗪还显示出会导致情绪,认知,僵硬和功能能力的轻微恶化。这些作用是否持续,解决或在持续治疗中恶化尚不清楚。
处方者应通过评估其对舞蹈病的影响和可能的不良反应(包括抑郁症和自杀倾向,认知能力下降,帕金森病,吞咽困难,镇静/嗜睡,静坐不足,静坐状态,躁动和残疾),定期重新评估患者对丁苯那嗪的需求。可能难以区分不良反应和潜在疾病的进展;减少剂量或停止用药可能有助于临床医生区分这两种可能性。在某些患者中,潜在的舞蹈病本身可能会随着时间的推移而改善,从而减少对丁苯那嗪的需求。
在开具每天超过50 mg的丁苯那嗪处方之前,应对患者进行基因分型,以确定他们是否表达药物代谢酶CYP2D6。 CYP2D6检测对于确定患者是丁苯那嗪的不良代谢者(PMs),广泛代谢者(EMs)还是中等代谢者(IMs)是必要的。
丁苯那嗪的PM患者比EM患者具有更高水平的主要药物代谢产物(α-HTBZ约3倍,β-HTBZ约9倍)。剂量应根据患者的CYP2D6代谢者状态进行调整。在被鉴定为CYP2D6 PM的患者中,最大推荐的每日总剂量为50 mg,最大推荐的单次剂量为25 mg [请参见剂量和给药方法(2.2),在特定人群中使用(8.7),临床药理学(12.3)] 。
与丁苯那嗪和其他降低多巴胺能传播的药物相关的潜在致命症状复合物有时被称为神经安定性恶性综合症(NMS) [见药物相互作用(7.6)] 。 NMS的临床表现为高热,肌肉僵硬,精神状态改变和自主神经不稳定(脉搏或血压异常,心动过速,发汗和心律不齐)。其他体征可能包括肌酐磷酸激酶升高,肌红蛋白尿,横纹肌溶解和急性肾衰竭。 NMS的诊断可能很复杂;其他严重的内科疾病(例如,肺炎,全身感染)以及未经治疗或未得到充分治疗的锥体外系疾病可以表现出相似的体征和症状。鉴别诊断中的其他重要考虑因素包括中枢抗胆碱能毒性,中暑,药物热和原发性中枢神经系统病理。
NMS的管理应包括(1)立即停用丁苯那嗪; (2)加强对症治疗和医学监测; (3)对任何伴随着严重的医学问题的治疗,只要有具体的治疗方法即可。关于NMS的具体药物治疗方案尚无普遍共识。
据报道,随着药物治疗的恢复,NMS的复发。如果从NMS恢复后需要用丁苯那嗪治疗,则应监测患者的复发迹象。
Tetrabenazine可能会增加静坐症,躁动和躁动的风险。
在一项为期12周的双盲,安慰剂对照研究中,患有伴有HD的舞蹈症患者中,有10%(19%)的丁苯那嗪治疗的患者和0%的安慰剂治疗的患者观察到了静坐症。在一项为期80周的开放标签研究中,在20%丁苯那嗪治疗的患者中观察到了静坐症。
接受丁苯那嗪的患者应监测静坐症的存在。还应监测接受丁苯那嗪的患者的躁动和躁动的体征和症状,因为这些可能是导致静坐症的指标。如果患者发生静坐不全,应减少丁苯那嗪的剂量;但是,有些患者可能需要停止治疗。
四苯那嗪可引起帕金森综合征。在一项为期12周的双盲,安慰剂对照研究中,伴有HD的舞蹈病患者中,有15%的丁苯那嗪治疗患者观察到提示有帕金森综合症的症状(即运动迟缓,高渗和僵硬),而相比之下0%安慰剂治疗的患者。在48周和80周的开放标签研究中,分别有10%和3%的丁苯那嗪治疗的患者观察到提示帕金森氏症的症状。
因为刚度可以作为亨廷顿氏病潜在疾病过程的一部分发展,所以可能很难区分这种药物引起的不良反应和潜在疾病过程的进展。对于某些亨廷顿氏病患者,药物诱发的帕金森综合症比未治疗的舞蹈病更有可能导致功能障碍。如果患者在丁苯那嗪治疗期间出现帕金森氏症,应考虑减少剂量;在某些患者中,可能需要停止治疗。
镇静是丁苯那嗪最常见的剂量限制性不良反应。在一项为期12周的双盲,安慰剂对照试验中,患有伴有HD的舞蹈病患者中,镇静/嗜睡发生在17/54(31%)的丁苯那嗪治疗的患者和1(3%)的安慰剂治疗的患者中患者。镇静是停止15/54(28%)患者丁苯那嗪向上滴定和/或降低丁苯那嗪剂量的原因。除一种情况外,降低丁苯那嗪的剂量可导致镇静作用降低。在48周和80周的开放标签研究中,丁苯那嗪治疗的患者分别发生了17%和57%的镇静/镇静作用。在某些患者中,镇静剂量低于推荐剂量。
患者在进行维持剂量的丁苯那嗪并且知道该药物如何影响他们之前,不应进行需要精神觉醒的活动以维护自己或他人的安全,例如操作汽车或操作危险的机械。
Tetrabenazine导致校正后的QT(QTc)间隔稍有增加(约8毫秒)。 QT延长可导致尖端扭转型室性心动过速的发生,风险随着延长程度的增加而增加[见临床药理学(12.2)]。应避免将Tetrabenazine片剂与已知可延长QTc的其他药物联合使用,包括抗精神病药物(例如氯丙嗪,氟哌啶醇,硫代哒嗪,齐拉西酮),抗生素(例如莫西沙星),1A类(例如奎尼丁,普鲁卡因酰胺) )和III类抗心律失常药物(或已知延长QTc间隔的任何其他药物)(例如,胺碘酮,索他洛尔) [请参阅药物相互作用(7.5)] 。
先天性长QT综合征患者和有心律不齐病史的患者也应避免使用Tetrabenazine。在某些情况下,与使用延长QTc间隔的药物(包括(1)心动过缓)一起使用,可能会增加尖尖扭转和/或猝死的风险。 (2)低钾血症或低镁血症; (3)同时使用其他延长QTc间隔的药物; (4)先天性QT间期延长[见临床药理学(12.2)] 。
四苯那嗪在接受25或50毫克单剂量的健康志愿者中引起体位性头晕。一名受试者患有晕厥,而一名患有姿势性头晕的受试者记录了矫正。在为期12周的对照试验中,丁苯那嗪治疗的患者中有4%出现头晕(与之相比,安慰剂组无)。但是,在这些事件中未测量血压。对于易患低血压的患者,应考虑监测站立时的生命体征。
四苯那嗪可提高人的血清催乳素浓度。向健康志愿者服用25毫克后,血浆催乳素峰值水平增加了4至5倍。组织培养实验表明,约有三分之一的人类乳腺癌在体外是催乳激素依赖性的,如果考虑将丁苯那嗪用于先前发现过乳腺癌的患者,则这是潜在的重要因素。尽管血清催乳素浓度升高可引起闭经,溢乳,男性乳房发育不全和阳imp,但对于大多数患者而言,血清催乳素浓度升高的临床意义尚不清楚。血清催乳素水平的长期升高(尽管未在丁苯那嗪开发计划中进行评估)与雌激素水平低和骨质疏松症的风险增加有关。如果临床上怀疑有症状性高催乳素血症,应进行适当的实验室检查,并应考虑停用丁苯那嗪。
由于丁苯那嗪或其代谢物与含黑色素的组织结合,因此随着时间的流逝,它可能积聚在这些组织中。这增加了丁苯那嗪在长期使用后可能在这些组织中引起毒性的可能性。在有色物种(例如狗)的慢性毒性研究中,没有对眼睛进行眼科检查或显微镜检查。人体的眼科监测不足以排除长期暴露后发生伤害的可能性。
丁苯那嗪与含黑色素组织结合的临床相关性尚不清楚。尽管没有针对定期眼科监测的具体建议,但开药者应意识到长期眼科作用的可能性[见临床药理学(12.2)] 。
以下和标签中其他地方描述了以下严重不良反应:
抑郁和自杀[请参阅警告和注意事项(5.1)]
抗精神病药物恶性综合症(NMS) [请参阅警告和注意事项(5.4)]
静坐症,躁动和躁动[请参阅警告和注意事项(5.5)]
帕金森病[请参阅警告和注意事项(5.6)]
镇静和嗜睡[请参阅警告和注意事项(5.7)]
QTc延长[请参阅警告和注意事项(5.8)]
低血压和体位性低血压[请参阅警告和注意事项(5.9)]
高泌乳素血症[请参阅警告和注意事项(5.10)]
与含黑色素的组织结合[参见警告和注意事项(5.11)]
由于临床试验是在广泛不同的条件下进行的,因此无法将在某种药物的临床试验中观察到的不良反应率直接与另一种药物在临床试验中观察到的不良反应率进行比较,并且可能无法反映实际中观察到的不良反应率。
在其开发过程中,丁苯那嗪被施用于773名独特的受试者和患者。丁苯那嗪的暴露条件和持续时间差异很大,包括健康志愿者(n = 259)的单剂量和多剂量临床药理研究,开放标签(n = 529)和双盲研究(n = 84)。在患者中。
在一项针对HD患者的随机,为期12周的安慰剂对照临床试验中,丁苯那嗪组的不良反应比安慰剂组更为常见。在研究期间的任何时间,接受丁苯那嗪的54名患者中有49名(91%)发生了一种或多种不良反应。最常见的不良反应(镇静/嗜睡,疲劳,失眠,抑郁,静坐不安,焦虑/不安加重和恶心)(比安慰剂高10%以上,至少比安慰剂大5%)。
≥4%的患者发生不良反应
表1列出了研究中任何时候在≥4%的丁苯那嗪治疗的患者中发生的最常见不良反应的数量和百分比,其发生频率高于安慰剂治疗的患者。
表1 :亨廷顿氏病患者12周双盲安慰剂对照试验的不良反应
不良反应 | 四苯那嗪 n = 54 (%) | 安慰剂 n = 30 (%) |
镇静/镇静 | 31 | 3 |
失眠 | 22 | 0 |
疲劳 | 22 | 13 |
萧条 | 19 | 0 |
ka | 19 | 0 |
焦虑/焦虑加剧 | 15 | 3 |
秋季 | 15 | 13 |
恶心 | 13 | 7 |
上呼吸道 感染 | 11 | 7 |
易怒 | 9 | 3 |
平衡难度 | 9 | 0 |
帕金森氏症/运动迟缓 | 9 | 0 |
呕吐 | 6 | 3 |
裂伤(头) | 6 | 0 |
瘀斑 | 6 | 0 |
食欲下降 | 4 | 0 |
强迫症 | 4 | 0 |
头晕 | 4 | 0 |
构音障碍 | 4 | 0 |
不稳定的步伐 | 4 | 0 |
头痛 | 4 | 3 |
气促 | 4 | 0 |
支气管炎 | 4 | 0 |
排尿困难 | 4 | 0 |
由于54名(52%)随机分配给丁苯那嗪的患者中有28名出现了一种或多种不良反应,因此中止了剂量递增或减少了研究药物的剂量。这些不良反应包括镇静(15),静坐不全(7),帕金森综合症(4),抑郁症(3),焦虑症(2),疲劳(1)和腹泻(1)。一些患者有一个以上的AR,因此计数不止一次。
锥体外系症状引起的不良反应
表2描述了被认为是锥体束外不良反应的事件的发生率,与安慰剂治疗的患者相比,丁苯那嗪治疗的患者发生的频率更高。
表2:在亨廷顿舞蹈病患者的12周,双盲,安慰剂对照试验中,由于锥体束外症状引起的不良反应
四苯那嗪 n = 54 % | 安慰剂 n = 30 % | |
ka质1 | 19 | 0 |
锥体外系事件2 | 15 | 0 |
任何锥体外事件 | 33 | 0 |
1具有以下不良事件优选术语的患者被归为此类:静坐不全,运动亢进,躁动不安。
2具有以下不良事件首选用语的患者被归为此类:运动迟缓,帕金森病,锥体束外疾病,高渗。
患者可能发生了不止一种类别的事件。
吞咽困难
吞咽困难是HD的一个组成部分。但是,减少多巴胺能传播的药物与食道动力障碍和吞咽困难有关。吞咽困难可能与吸入性肺炎有关。在一项为期12周的双盲,安慰剂对照研究中,患有伴有HD的舞蹈症患者中,有4%的丁苯那嗪治疗的患者和3%的安慰剂治疗的患者存在吞咽困难。在48周和80周的开放标签研究中,分别有10%和8%的丁苯那嗪治疗的患者出现吞咽困难。吞咽困难的一些病例与吸入性肺炎有关。这些事件是否与治疗有关尚不清楚。
在批准后使用Tetrabenazine片剂期间已确认出现以下不良反应。由于这些反应是从不确定大小的人群中自愿报告的,因此并非总是能够可靠地估计其发生频率或建立与药物暴露的因果关系。
神经系统疾病:震颤
精神疾病:混乱,侵略加剧
呼吸,胸和纵隔疾病:肺炎
皮肤和皮下组织疾病:多汗症,皮疹
体外研究表明,α-HTBZ和β-HTBZ是CYP2D6的底物。强效CYP2D6抑制剂(例如帕罗西汀,氟西汀,奎尼丁)显着增加对这些代谢物的暴露。在维持稳定剂量丁苯那嗪的患者中加入强CYP2D6抑制剂(例如氟西汀,帕罗西汀,奎尼丁)时,可能需要降低丁苯那嗪的剂量。服用强效CYP2D6抑制剂的患者中丁苯那嗪的每日剂量不应超过每天50 mg,丁苯那嗪的最大单剂量不应超过25 mg [参见剂量和给药方法(2.3),警告和注意事项(5.3),在特定人群中使用(8.7),临床药理学(12.3)] 。
利血平不可逆地与VMAT2结合,其作用持续时间为数天。处方者应等到舞蹈病重新出现后再服用丁苯那嗪,以避免中枢神经系统中5-羟色胺和去甲肾上腺素的过量使用和大量消耗。停用利血平后至少应过20天再开始丁苯那嗪。不可同时使用利福平和利血平[见禁忌症(4)]。
服用MAOI的患者禁用四苯那嗪。 Tetrabenazine不应与MAOI组合使用,或在停止使用MAOI治疗的至少14天之内使用[请参见禁忌症(4)]。
酒精或其他镇静药物的同时使用可能会产生加和效应,并使镇静和嗜睡感恶化[见警告和注意事项(5.7)]。
四苯那嗪会使QTc延长一小段时间(约8毫秒),应避免与已知会导致QTc延长的其他药物同时使用,包括抗精神病药(例如氯丙嗪,氟哌啶醇,硫代哒嗪,齐拉西酮),抗生素(例如莫西沙星) ),1A类(例如奎尼丁,普鲁卡因酰胺)和III类(例如胺碘酮,索他洛尔)抗心律不齐药物或已知可延长QTc间隔的任何其他药物。先天性长QT综合征和有心律不齐病史的患者应避免使用川tra嗪。某些情况可能会增加尖尖扭转或突然死亡的风险,例如(1)心动过缓; (2)低钾血症或低镁血症; (3)同时使用其他延长QTc间隔的药物; (4)先天性QT间期延长[见警告和注意事项(5.8),临床药理学(12.2)]。
并用丁苯那嗪和多巴胺拮抗剂或抗精神病药(例如氯丙嗪,氟哌啶醇,奥氮平,利培酮,硫代哒嗪,齐拉西酮),可能增加帕金森病,NMS和静坐症的风险[见警告和注意事项(5.4、5.5、5.6)] 。
当前正在服用氘苯丁嗪或伐苯那嗪的患者禁用四苯那嗪。
风险摘要
没有关于孕妇使用丁苯那嗪相关的发育风险的足够数据。在大鼠整个妊娠和哺乳期服用丁苯那嗪会导致死产和产后死亡率增加。在怀孕期间或在怀孕和哺乳期间向大鼠施用丁苯那嗪的主要人类代谢产物对发育中的胎儿和后代产生不利影响(死亡率增加,生长下降以及神经行为和生殖功能障碍)。在临床相关剂量下,丁苯那嗪和丁苯那嗪的主要人类代谢产物对大鼠产生了不利的发育作用[见数据] 。
在美国普通人群中,临床公认的怀孕中主要先天缺陷和流产的估计背景风险分别为2%至4%和15%至20%。对于所指示的人群,主要出生缺陷和流产的背景风险尚不清楚。
数据
动物资料
在整个器官发生期间,以最高30 mg / kg / day的口服剂量(或100 mg / day最高推荐人剂量[MRHD]的3倍,以mg / kg的剂量)对妊娠大鼠给予四苯那嗪对胚胎胎儿发育没有明显的影响。 m 2为基础)。在器官发生期间以最高60 mg / kg /天的口服剂量(或以mg / m 2为基础的MRHD的12倍)对怀孕的兔子给药时,四苯那嗪对胚胎胎儿发育没有影响。
从器官发生开始至哺乳期对怀孕大鼠口服丁苯那嗪(5、15和30 mg / kg /天)时,在15和30 mg / kg /天时观察到死产和后代死亡率增加并观察到所有剂量的幼仔延迟发育。没有确定对大鼠产前和产后发育毒性无影响的剂量。以mg / m 2为基础,最低测试剂量(5 mg / kg /天)小于MRHD。
由于口服丁苯那嗪的大鼠不会产生9-去甲基-β-DHTBZ(丁苯那嗪的主要人类代谢物),因此该代谢物直接用于怀孕和哺乳期的大鼠。在整个器官发生期间口服9-desmethyl-β-DHTBZ(8、15和40 mg / kg / day)会导致15和40 mg / kg / day的胚胎胎儿死亡率增加以及40时胎儿体重的降低mg / kg /天,也对母体有毒。从器官发生开始到哺乳期口服给怀孕的大鼠口服9-desmethyl-β-DHTBZ(8、15和40 mg / kg / day),会增加妊娠持续时间,死产和后代出生后死亡率(40毫克/公斤/天);减少幼犬体重(40 mg / kg /天);观察到神经行为(活动,学习和记忆障碍增加)和生殖(窝产仔数减少)损害(15和40 mg / kg /天)。在最高剂量下观察到母体毒性。对大鼠发育毒性的无影响剂量(8 mg / kg /天)与妊娠大鼠血浆中9-去甲基-β-DHTBZ的血浆暴露量(AUC)相关,低于人在MRHD时的血浆暴露量(AUC)。
风险摘要
没有关于人乳中丁苯那嗪或其代谢产物的存在,对母乳喂养婴儿的影响或药物对乳汁产生的影响的数据。应当考虑母乳喂养的发育和健康益处,以及母亲对丁苯那嗪的临床需求以及丁苯那嗪或潜在母体疾病对母乳喂养婴儿的任何潜在不利影响。
儿科患者的安全性和有效性尚未确定。
丁苯那嗪及其主要代谢产物的药代动力学尚未在老年患者中进行正式研究。
由于尚不知道增加丁苯那嗪和其他循环代谢物暴露的安全性和有效性,因此无法调整肝功能不全中丁苯那嗪的剂量以确保安全使用。禁止在患有肝功能不全的患者中使用丁苯那嗪[请参阅禁忌症(4),临床药理学(12.3)] 。
每天需要大于40毫克剂量的Tetrabenazine片剂的患者应首先进行测试并进行基因分型,以根据其表达药物代谢酶CYP2D6的能力来确定他们是否较差(PMs)或广泛代谢者(EMs)。丁苯那嗪的剂量应根据其状态为不良(PMs)或广泛代谢者(EMs)的情况进行个体化[参见剂量和用法(2.2),警告和注意事项(5.3),临床药理学(12.3)] 。
代谢不良
与EMs相比,较差的CYP2D6代谢物(PMs)与主要代谢物的接触水平要高得多(α-HTBZ约3倍,β-HTBZ约9倍)。因此,应根据患者的CYP2D6代谢物状态调整剂量,方法是将CYP2D6 PM的患者的单次剂量限制为最大25 mg,建议的每日剂量限制为不超过最大50 mg /天[参见剂量与管理(2.2),警告和注意事项(5.3),临床药理学(12.3)] 。
广泛/中间代谢物
在广泛的(EMs)或中间代谢物(IMs)中,丁苯那嗪的剂量可以滴定为最大单剂量37.5 mg和建议的最大每日剂量100 mg [参见剂量和用法(2.2),药物相互作用(7.1) ,临床药理学(12.3)]。
四苯那嗪不是受控物质。
尽管这些观察结果不是系统性的,但临床试验并未显示患者出现了寻求药物的行为。在已经出售丁苯那嗪的国家,尚未有上市后经验的滥用报告。
与任何具有CNS活性的药物一样,开药者应仔细评估患者的药物滥用史,并密切关注这些患者,观察他们是否存在丁苯那嗪滥用或滥用的迹象(例如耐受性的发展,剂量要求的增加,寻药行为)。 。
患者突然停用丁苯那嗪不会产生戒断症状或停药综合征。仅观察到原始疾病的症状重新出现[见剂量和给药方法(2.4)]。
为支持注册而进行的开放标签试验中发生了3次用药过量。文献中已有八例过量使用丁苯那嗪的病例报道。这些患者中丁苯那嗪的剂量为100 mg至1 g。 Adverse reactions associated with tetrabenazine overdose include acute dystonia, oculogyric crisis, nausea and vomiting, sweating, sedation, hypotension, confusion, diarrhea, hallucinations, rubor, and tremor.
Treatment should consist of those general measures employed in the management of overdosage with any CNS-active drug. General supportive and symptomatic measures are recommended. Cardiac rhythm and vital signs should be monitored. In managing overdosage, the possibility of multiple drug involvement should always be considered. The physician should consider contacting a poison control center on the treatment of any overdose.
Tetrabenazine is a monoamine depletor for oral administration. The molecular weight of tetrabenazine is 317.43 g/mol; the pKa is 6.51. Tetrabenazine is a hexahydro-dimethoxy-benzoquinolizine derivative and has the following chemical name: cis rac –1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-3-(2-methylpropyl)-2H-benzo[a]quinolizin-2-one.
The molecular formula C 19 H 27 NO 3 is represented by the following molecular structure:
Tetrabenazine is a white to almost white powder that is sparingly soluble in water and soluble in ethanol.
Each tetrabenazine tablet contains either 12.5 or 25 mg of tetrabenazine as the active ingredient.
Tetrabenazine Tablets contain tetrabenazine as the active ingredient and the following inactive ingredients: anhydrous lactose, colloidal silicon dioxide, croscarmellose sodium and magnesium stearate. The 25 mg strength tablet also contains ferric oxide yellow as an inactive ingredient.
Tetrabenazine Tablets are supplied as a yellow tablet with functional score containing 25 mg of tetrabenazine or as an unscored white to off-white tablet containing 12.5 mg of tetrabenazine.
The precise mechanism by which tetrabenazine exerts its anti-chorea effects is unknown but is believed to be related to its effect as a reversible depletor of monoamines (such as dopamine, serotonin, norepinephrine, and histamine) from nerve terminals. Tetrabenazine reversibly inhibits the human vesicular monoamine transporter type 2 (VMAT2) (K i ≈ 100 nM), resulting in decreased uptake of monoamines into synaptic vesicles and depletion of monoamine stores. Human VMAT2 is also inhibited by dihydrotetrabenazine (HTBZ), a mixture of α-HTBZ and β-HTBZ. α- and β-HTBZ, major circulating metabolites in humans, exhibit high in vitro binding affinity to bovine VMAT2. Tetrabenazine exhibits weak in vitro binding affinity at the dopamine D 2 receptor (K i = 2100 nM).
QTc Prolongation
The effect of a single 25 or 50 mg dose of tetrabenazine on the QT interval was studied in a randomized, double-blind, placebo-controlled crossover study in healthy male and female subjects with moxifloxacin as a positive control. At 50 mg, tetrabenazine caused an approximately 8 msec mean increase in QTc (90% CI: 5.0, 10.4 msec). Additional data suggest that inhibition of CYP2D6 in healthy subjects given a single 50 mg dose of tetrabenazine does not further increase the effect on the QTc interval. Effects at higher exposures to either tetrabenazine or its metabolites have not been evaluated [see Warnings and Precautions (5.8), Drug Interactions (7.5)].
Melanin Binding
Tetrabenazine or its metabolites bind to melanin-containing tissues (ie, eye, skin, fur) in pigmented rats. After a single oral dose of radiolabeled tetrabenazine, radioactivity was still detected in eye and fur at 21 days post dosing [see Warnings and Precautions (5.11)].
吸收性
Following oral administration of tetrabenazine, the extent of absorption is at least 75%. After single oral doses ranging from 12.5 to 50 mg, plasma concentrations of tetrabenazine are generally below the limit of detection because of the rapid and extensive hepatic metabolism of tetrabenazine by carbonyl reductase to the active metabolites α-HTBZ and β-HTBZ. α-HTBZ and β-HTBZ are metabolized principally by CYP2D6. Peak plasma concentrations (C max ) of α-HTBZ and β-HTBZ are reached within 1 to 1½ hours post-dosing. α-HTBZ is subsequently metabolized to a minor metabolite, 9-desmethyl-α-DHTBZ. β-HTBZ is subsequently metabolized to another major circulating metabolite, 9-desmethyl-β-DHTBZ, for which C max is reached approximately 2 hours post-dosing.
Food Effects
The effects of food on the bioavailability of tetrabenazine were studied in subjects administered a single dose with and without food. Food had no effect on mean plasma concentrations, C max , or the area under the concentration time course (AUC) of α-HTBZ or β-HTBZ [see Dosage and Administration (2.1)].
分配
Results of PET-scan studies in humans show that radioactivity is rapidly distributed to the brain following intravenous injection of 11 C-labeled tetrabenazine or α-HTBZ, with the highest binding in the striatum and lowest binding in the cortex.
The in vitro protein binding of tetrabenazine, α-HTBZ, and β-HTBZ was examined in human plasma for concentrations ranging from 50 to 200 ng/mL. Tetrabenazine binding ranged from 82% to 85%, α-HTBZ binding ranged from 60% to 68%, and β-HTBZ binding ranged from 59% to 63%.
代谢
After oral administration in humans, at least 19 metabolites of tetrabenazine have been identified. α-HTBZ, β-HTBZ and 9-desmethyl-β-DHTBZ are the major circulating metabolites and are subsequently metabolized to sulfate or glucuronide conjugates. α-HTBZ and β-HTBZ are formed by carbonyl reductase that occurs mainly in the liver. α-HTBZ is Odealkylated by CYP450 enzymes, principally CYP2D6, with some contribution of CYP1A2 to form 9-desmethyl-α-DHTBZ, a minor metabolite. β-HTBZ is O-dealkylated principally by CYP2D6 to form 9-desmethyl-β-DHTBZ.
The results of in vitro studies do not suggest that tetrabenazine, α-HTBZ, or β-HTBZ or 9desmethyl-β-DHTBZ are likely to result in clinically significant inhibition of CYP2D6, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A. In vitro studies suggest that neither tetrabenazine nor its α- or β-HTBZ or 9-desmethyl-β-DHTBZ metabolites are likely to result in clinically significant induction of CYP1A2, CYP3A4, CYP2B6, CYP2C8, CYP2C9, or CYP2C19.
Neither tetrabenazine nor its α- or β-HTBZ or 9-desmethyl-β-DHTBZ metabolites are likely to be a substrates or inhibitors of P-glycoprotein at clinically relevant concentrations in vivo.
消除
After oral administration, tetrabenazine is extensively hepatically metabolized, and the metabolites are primarily renally eliminated. α-HTBZ, β-HTBZ and 9-desmethyl-β-DHTBZ have half-lives of 7 hours, 5 hours and 12 hours respectively. In a mass balance study in 6 healthy volunteers, approximately 75% of the dose was excreted in the urine, and fecal recovery accounted for approximately 7 to 16% of the dose. Unchanged tetrabenazine has not been found in human urine. Urinary excretion of α-HTBZ or β-HTBZ accounted for less than 10% of the administered dose. Circulating metabolites, including sulfate and glucuronide conjugates of HTBZ metabolites as well as products of oxidative metabolism, account for the majority of metabolites in the urine.
特定人群
性别
There is no apparent effect of gender on the pharmacokinetics of α-HTBZ or β-HTBZ.
肝功能不全
The disposition of tetrabenazine was compared in 12 patients with mild to moderate chronic liver impairment (Child-Pugh scores of 5 to 9) and 12 age- and gender-matched subjects with normal hepatic function who received a single 25 mg dose of tetrabenazine. In patients with hepatic impairment, tetrabenazine plasma concentrations were similar to or higher than concentrations of α-HTBZ, reflecting the markedly decreased metabolism of tetrabenazine to α-HTBZ. The mean tetrabenazine C max in subjects with hepatic impairment was approximately 7- to 190-fold higher than the detectable peak concentrations in healthy subjects. The elimination half-life of tetrabenazine in subjects with hepatic impairment was approximately 17.5 hours. The time to peak concentrations (t max ) of α-HTBZ and β-HTBZ was slightly delayed in subjects with hepatic impairment compared to age-matched controls (1.75 hrs vs. 1.0 hrs), and the elimination half-lives of the α-HTBZ and β-HTBZ were prolonged to approximately 10 and 8 hours, respectively. The exposure to α-HTBZ and β-HTBZ was approximately 30 to 39% greater in patients with liver impairment than in age-matched controls. The safety and efficacy of this increased exposure to tetrabenazine and other circulating metabolites are unknown so that it is not possible to adjust the dosage of tetrabenazine in hepatic impairment to ensure safe use. Therefore, tetrabenazine is contraindicated in patients with hepatic impairment [see Contraindications (4), Use in Specific Populations (8.6)] .
Poor CYP2D6 Metabolizers
Although the pharmacokinetics of tetrabenazine and its metabolites in patients who do not express the drug metabolizing enzyme, CYP2D6, poor metabolizers, (PMs), have not been systematically evaluated, it is likely that the exposure to α-HTBZ and β-HTBZ would be increased similar to that observed in patients taking strong CYP2D6 inhibitors (3- and 9-fold, respectively) [see Dosage and Administration (2.3), Warnings and Precautions (5.3), Use in Specific Populations (8.7)] .
药物相互作用
CYP2D6 Inhibitors
In vitro studies indicate that α-HTBZ and β-HTBZ are substrates for CYP2D6. The effect of CYP2D6 inhibition on the pharmacokinetics of tetrabenazine and its metabolites was studied in 25 healthy subjects following a single 50 mg dose of tetrabenazine given after 10 days of administration of the strong CYP2D6 inhibitor paroxetine 20 mg daily. There was an approximately 30% increase in C max and an approximately 3-fold increase in AUC for α-HTBZ in subjects given paroxetine prior to tetrabenazine compared to tetrabenazine given alone. For β-HTBZ, the C max and AUC were increased 2.4- and 9-fold, respectively, in subjects given paroxetine prior to tetrabenazine given alone. The elimination half-life of α-HTBZ and β-HTBZ was approximately 14 hours when tetrabenazine was given with paroxetine.
Strong CYP2D6 inhibitors (eg, paroxetine, fluoxetine, quinidine) markedly increase exposure to these metabolites. The effect of moderate or weak CYP2D6 inhibitors such as duloxetine, terbinafine, amiodarone, or sertraline on the exposure to tetrabenazine and its metabolites has not been evaluated [see Dosage and Administration (2.3), Warnings and Precautions (5.3), Drug Interactions (7.1), Use in Specific Populations (8.7)] .
地高辛
Digoxin is a substrate for P-glycoprotein. A study in healthy volunteers showed that tetrabenazine (25 mg twice daily for 3 days) did not affect the bioavailability of digoxin, suggesting that at this dose, tetrabenazine does not affect P-glycoprotein in the intestinal tract. In vitro studies also do not suggest that tetrabenazine or its metabolites are P-glycoprotein inhibitors.
致癌作用
No increase in tumors was observed in p53 +/- transgenic mice treated orally with tetrabenazine (5, 15, and 30 mg/kg/day for 26 weeks.
No increase in tumors was observed in Tg.rasH2 transgenic mice treated orally with a major human metabolite, 9-desmethyl-β-DHTBZ (20, 100, and 200 mg/kg/day), for 26 weeks.
诱变
Tetrabenazine and metabolites α-HTBZ, β-HTBZ, and 9-desmethyl-β-DHTBZ were negative in an in vitro bacterial reverse mutation assay. Tetrabenazine was clastogenic in an in vitro chromosomal aberration assay in Chinese hamster ovary cells in the presence of metabolic activation. α-HTBZ and β-HTBZ were clastogenic in an in vitro chromosome aberration assay in Chinese hamster lung cells in the presence and absence of metabolic activation. 9-desmethyl-βDHTBZ was not clastogenic in an in vitro chromosomal aberration assay in human peripheral blood mononuclear cells in the presence or absence of metabolic activation. In vivo micronucleus assays were conducted in male and female rats and male mice. Tetrabenazine was negative in male mice and rats but produced an equivocal response in female rats.
生育能力受损
Oral administration of tetrabenazine (5, 15, or 30 mg/kg/day) to female rats prior to and throughout mating, and continuing through day 7 of gestation resulted in disrupted estrous cyclicity at doses greater than 5 mg /kg/day (less than the MRHD on a mg/m 2 basis).
No effects on mating and fertility indices or sperm parameters (motility, count, density) were observed when males were treated orally with tetrabenazine (5, 15, or 30 mg/kg/day; up to 3 times the MRHD on a mg/m 2 basis) prior to and throughout mating with untreated females.
Because rats dosed with tetrabenazine do not produce 9-desmethyl-beta-DHTBZ, a major human metabolite, these studies may not have adequately assessed the potential of tetrabenazine to impair fertility in humans.
研究1
The efficacy of tetrabenazine as a treatment for the chorea of Huntington's disease was established primarily in a randomized, double-blind, placebo-controlled multi-center trial (Study 1) conducted in ambulatory patients with a diagnosis of HD. The diagnosis of HD was based on family history, neurological exam, and genetic testing. Treatment duration was 12 weeks, including a 7-week dose titration period and a 5-week maintenance period followed by a 1-week washout. Tetrabenazine Tablets were started at a dose of 12.5 mg per day, followed by upward titration at weekly intervals, in 12.5 mg increments until satisfactory control of chorea was achieved, intolerable side effects occurred, or until a maximal dose of 100 mg per day was reached.
The primary efficacy endpoint was the Total Chorea Score, an item of the Unified Huntington's Disease Rating Scale (UHDRS). On this scale, chorea is rated from 0 to 4 (with 0 representing no chorea) for 7 different parts of the body. The total score ranges from 0 to 28.
As shown in Figure 1, Total Chorea Scores for patients in the drug group declined by an estimated 5.0 units during maintenance therapy (average of Week 9 and Week 12 scores versus baseline), compared to an estimated 1.5 units in the placebo group. The treatment effect of 3.5 units was statistically significant. At the Week 13 follow-up in Study 1 (1 week after discontinuation of the study medication), the Total Chorea Scores of patients receiving tetrabenazine returned to baseline.
Figure 1: Mean ± sem Changes from Baseline in Total Chorea Score in 84 HD Patients Treated with Tetrabenazine (n=54) or Placebo (n=30)
(error bars are ± sem)
*p<0.05
Figure 2 illustrates the cumulative percentages of patients from the tetrabenazine and placebo treatment groups who achieved the level of reduction in the Total Chorea Score shown on the X axis. The left-ward shift of the curve (toward greater improvement) for the tetrabenazine-treated patients indicates that these patients were more likely to have any given degree of improvement in chorea score. For example, about 7% of placebo patients had a 6-point or greater improvement compared to 50% of tetrabenazine-treated patients. The percentage of patients achieving reductions of at least 10, 6, and 3 points from baseline to Week 12 are shown in the inset table.
Figure 2: Cumulative Percentage of Patients with Specified Changes from Baseline in Total Chorea Score. The Percentages of Randomized Patients within each treatment group who completed Study 1 were: Placebo 97%, Tetrabenazine 91%.
A Physician-rated Clinical Global Impression (CGI) favored tetrabenazine statistically. In general, measures of functional capacity and cognition showed no difference between tetrabenazine and placebo. However, one functional measure (Part 4 of the UHDRS), a 25-item scale assessing the capacity for patients to perform certain activities of daily living, showed a decrement for patients treated with tetrabenazine compared to placebo, a difference that was nominally statistically significant. A 3-item cognitive battery specifically developed to assess cognitive function in patients with HD (Part 2 of the UHDRS) also showed a decrement for patients treated with tetrabenazine compared to placebo, but the difference was not statistically significant.
研究2
A second controlled study was performed in patients who had been treated with open-label tetrabenazine for at least 2 months (mean duration of treatment was 2 years). They were randomized to continuation of tetrabenazine at the same dose (n=12) or to placebo (n=6) for three days, at which time their chorea scores were compared. Although the comparison did not reach statistical significance (p=0.1), the estimate of the treatment effect was similar to that seen in Study 1 (about 3.5 units).
Tetrabenazine Tablets are available in the following strengths and packages:
Tetrabenazine Tablets 12.5 mg are available for oral administration as white to off-white, round, flat face, bevelled edge, unscored tablets, engraved "T12.5" on one side, "APO" on the other side.它们的提供方式如下:
Bottles of 112 NDC 60505-3882-7
Tetrabenazine Tablets 25 mg are available for oral administration as yellow, round, flat face, bevelled edge tablets with functional scoring on one side, engraved "APO" over "T25" on the other side.它们的提供方式如下:
Bottles of 112 NDC 60505-3883-7
Store at 20ºC to 25ºC (68ºF to 77ºF); excursions permitted from 15ºC to 30ºC (59ºF to 86ºF) [see USP Controlled Room Temperature].
建议患者阅读FDA批准的患者标签(用药指南)。
Risk of Suicidality
Inform patients and their families that Tetrabenazine Tablets may increase the risk of suicidal thinking and behaviors. Counsel patients and their families to remain alert to the emergence of suicidal ideation and to report it immediately to the patient's physician [see Contraindications (4), Warnings and Precautions (5.1)] .
Risk of Depression
Inform patients and their families that Tetrabenazine Tablets may cause depression or may worsen pre-existing depression. Encourage patients and their families to be alert to the emergence of sadness, worsening of depression, withdrawal, insomnia, irritability, hostility (aggressiveness), akathisia (psychomotor restlessness), anxiety, agitation, or panic attacks and to report such symptoms promptly to the patient's physician [see Contraindications (4), Warnings and Precautions (5.1)] .
Dosing of Tetrabenazine
Inform patients and their families that the dose of Tetrabenazine Tablets will be increased slowly to the dose that is best for each patient. Sedation, akathisia, parkinsonism, depression, and difficulty swallowing may occur. Such symptoms should be promptly reported to the physician, and the Tetrabenazine Tablets dose may need to be reduced or discontinued [see Dosage and Administration (2.2)] .
Risk of Sedation and Somnolence
Inform patients that Tetrabenazine Tablets may induce sedation and somnolence and may impair the ability to perform tasks that require complex motor and mental skills. Advise patients that until they learn how they respond to Tetrabenazine Tablets, they should be careful doing activities that require them to be alert, such as driving a car or operating machinery [see Warnings and Precautions (5.7)] .
Interaction with Alcohol
Advise patients and their families that alcohol may potentiate the sedation induced by Tetrabenazine Tablets [see Drug Interactions (7.4)].
Usage in Pregnancy
Advise patients and their families to notify the physician if the patient becomes pregnant or intends to become pregnant during tetrabenazine therapy, or is breastfeeding or intending to breastfeed an infant during therapy [see Use in Specific Populations (8.1)] .
All registered trademarks in this document are the property of their respective owners.
APOTEX INC.
Tetrabenazine Tablets
12.5 mg and 25 mg
由制造 Apotex Inc. Toronto, Ontario Canada M9L 1T9 | 制造用于 Apotex Corp. Weston, Florida USA 33326 |
Revised: September 2018
Revision: 4
T etrabenazine Tablets
(tet”ra ben ' a zeen)
Read the Medication Guide that comes with Tetrabenazine Tablets before you start taking it and each time you refill the prescription.可能有新的信息。 This information does not take the place of talking with your doctor about your medical condition or your trea
丁苯那嗪的常见副作用包括:嗜睡,镇静,运动迟缓,肌张力亢进,肌肉僵硬,抑郁,抑郁加剧,静坐不稳和躁动不安。其他副作用包括:吞咽困难,焦虑和头晕。有关不良影响的完整列表,请参见下文。
适用于丁苯那嗪:口服片剂
口服途径(平板电脑)
川tra嗪会增加患抑郁症和自杀念头和行为(自杀)的风险。这种风险必须与临床需求相平衡。密切监视患者的临床恶化,自杀倾向或异常行为。应告知家庭和看护人需要与处方者进行密切观察和沟通。在治疗有抑郁史或曾有自杀企图或意念的患者时,应格外小心。积极自杀的患者以及未接受治疗或未得到充分治疗的抑郁症患者禁用四苯那嗪。
除其所需的作用外,丁苯那嗪还可能引起一些不良作用。尽管并非所有这些副作用都可能发生,但如果确实发生了,则可能需要医疗护理。
服用丁苯那嗪时,如果有下列任何副作用,请立即咨询医生:
比较普遍;普遍上
不常见
如果服用丁苯那嗪时出现以下任何过量症状,请立即寻求紧急帮助:
服用过量的症状
丁苯那嗪可能会发生一些副作用,通常不需要医疗。随着身体对药物的适应,这些副作用可能会在治疗期间消失。另外,您的医疗保健专业人员可能会告诉您一些预防或减少这些副作用的方法。
请咨询您的医疗保健专业人员,是否持续存在以下不良反应或令人讨厌,或者是否对这些副作用有任何疑问:
比较普遍;普遍上
不常见
适用于丁苯那嗪:口服片剂
非常常见(10%或更多):锥体外系事件(33%),镇静/嗜睡(31%),静坐不全/运动亢进/躁动(19%),帕金森病(12%)
常见(1%至10%):平衡困难,头晕,构音困难,步态不稳,头痛
罕见(0.1%至1%):意识水平改变
罕见(小于0.1%):精神安定性恶性综合征
未报告频率:共济失调,运动障碍性癫痫,肌张力障碍,记忆力减退,健忘症
上市后报告:震颤[参考]
很常见(10%或更多):疲劳(22%),摔倒(15%)
普通(1%至10%):头伤
罕见(0.1%至1%):体温过高
未报告频率:乏力,体温过低,虚弱,哺乳,月经周期不规律[参考]
非常常见(10%或更多):失眠(22%),抑郁(19%),焦虑/严重焦虑(15%)
常见(1%至10%):烦躁,强迫症,激动,神志不清
未报告的频率:迷失方向,不真实的感觉,神经质,睡眠障碍
上市后报告:侵略性加剧[参考]
很常见(10%或更多):恶心(13%)
常见(1%至10%):呕吐,吞咽困难/窒息发作,便秘,腹泻
未报告频率:口干,胃epi痛,唾液[参考]
非常常见(10%或更多):上呼吸道感染(11%)
常见(1%至10%):呼吸急促,支气管炎
未报告频率:支气管肺炎
上市后报告:肺炎[参考]
常见(1%至10%):低血压
未报告频率:高血压危机,心动过缓[参考]
常见(1%至10%):瘀斑
未报告频率:出汗
上市后报告:多汗症,皮疹[参考]
常见(1%至10%):排尿困难[参考]
普通(1%至10%):食欲下降
未报告频率:厌食,体重增加[参考]
罕见(0.1%至1%):严重的锥体外系症状(例如,肌肉僵硬,自主神经功能障碍)
非常罕见(少于0.01%):骨骼肌损伤[参考]
未报告频率:白细胞减少症[参考]
未报告频率:眼科危机,畏光[参考]
1.“产品信息。Xenazine(丁苯那嗪)。” Prestwick Pharmaceuticals Inc,华盛顿特区,弗吉尼亚州。
某些副作用可能没有报道。您可以将其报告给FDA。
-初始剂量:每天一次,每天一次,口服12.5毫克;一周后每天两次口服增至12.5 mg。
-维护剂量:每周间隔缓慢滴定,每天12.5 mg。
-最大单次剂量:25毫克
评论:
-每天3次,每天37.5 mg /天或以上。
-确定需要每天大于50 mg剂量的患者中CYP450 2D6代谢者的状态。
使用:与亨廷顿舞蹈病相关的舞蹈病。
数据不可用。
禁止使用。
CYP450弱代谢者:
-最大单次剂量:25毫克
-最大每日剂量:50毫克
CYP450广泛和中等代谢者:
-最大单剂量:37.5毫克
-最大每日剂量:100毫克
与强效CYP450 2D6抑制剂同时使用:
-最大单次剂量:25毫克
-最大每日剂量:50毫克
不良反应的发生(例如,静坐不安,躁动不安,帕金森综合症,抑郁症,失眠,焦虑,镇静):减少剂量,如果事件仍未解决,请考虑停止使用该药物或开始其他治疗(例如,抗抑郁药)。
治疗中断:
-少于5天:以先前的维持剂量恢复治疗,无需滴定。
-大于5天:恢复治疗后重新滴定。
美国盒装警告:
-这种药物会增加患抑郁症和自杀的风险;治疗时应密切观察是否出现抑郁,自杀或异常行为改变。
-应告知患者,其家人和护理人员该风险,并指示他们立即向其医疗保健提供者报告有关行为。
-在治疗任何有抑郁史或自杀企图或想法的患者时,应格外小心。
-积极自杀或患有未经治疗或未得到充分治疗的抑郁症患者禁用此药。
未确定18岁以下患者的安全性和疗效。
有关其他预防措施,请参阅“警告”部分。
数据不可用。
行政建议:
-为每个患者个性化剂量。
-不考虑食物而服用该药物。
-可能会停药而不会逐渐减少。
储存要求:
-避光。
一般:
-如果在最大剂量下7至10天没有改善,这种药物不太可能会受益。
监控:
-静坐症,躁动,躁动不安,新发或恶化的抑郁症,自杀倾向的症状和体征
患者咨询:
-在治疗期间避免饮酒和其他镇静药物。
已知总共有495种药物与丁苯那嗪相互作用。
查看丁苯那嗪与下列药物的相互作用报告。
丁苯那嗪与酒精/食物有1种相互作用
与丁苯那嗪有7种疾病相互作用,包括:
具有高度临床意义。避免组合;互动的风险大于收益。 | |
具有中等临床意义。通常避免组合;仅在特殊情况下使用。 | |
临床意义不大。降低风险;评估风险并考虑使用替代药物,采取措施规避相互作用风险和/或制定监测计划。 | |
没有可用的互动信息。 |